When you write a book you should always be clear who you are writing it for. In my view "Superfuel" is not written for the general public. They would probably find it difficult to follow the vocabulary and the concepts of the nuclear industry, which he doesn’t hesitate to use with little explanation. Furthermore Martin is a journalist, who uses many words where pictures would be easier to understand, but in "Superfuel" he has included only four diagrams and trying to explain the “Travelling Wave Reactor” in Chapter 8 without a diagram is bound to fail.
So if he’s not writing to persuade the non-technical public to support the use of thorium and liquid fluoride reactor technologies, does he succeed in developing his argument for the nuclear cognoscenti or even an amateur like me with an engineering background?
Well, yes and no. His account is superficial and lacking in solid technical detail about his main proposition, thorium fuelled liquid fluoride reactors (LFTR’s). Aspects of the design that I questioned and needed to understand are not covered, like the treatment of the waste stream and the toxicity of fluorides. There isn’t even a photograph of the Oak Ridge Molten Salt Reactor Experiment to give substance to his frequent assertions about its pioneering advantages.
“Superfuel” also has numerous errors. For example on page 195 he states “After the Fukushima-Daiichi accident, there was a brief run on supplies of iodine-131. An isotope of iodine produced in specialised reactors, iodine-131 is used to prevent thyroid cancer from radiation exposure.” In fact it’s potassium iodide which is used to saturate the thyroid gland with iodine and lower the risk of uptake of radioactive iodine-131.
Other examples include stating that Toshiba “is Korean-owned” when it is in fact Japanese. That, “xenon poisoning” was discovered at the X-10 reactor at Oak Ridge when it was actually first discovered at the Hanford “B” reactor in 1944 and its strongly neutron absorbing properties were easily overcome by adding more fuel rods.
It’s what you would expect from an educated journalist and
not a scientist or engineer, so a member of the existing nuclear industry (who
Richard Martin labels “the nuclearati”), unfamiliar with liquid fuelled
reactors, would never be persuaded.
Where he is at his best is when he does his job as a
professional journalist, investigating, sifting the facts and then telling the
story, such as in his account of the history of the reasons why the development
of civilian nuclear energy went exclusively in the direction of the
uranium/plutonium fuel cycle. More
specifically how the light water reactor, with its inherent risk of explosion and release of radioactive materials,
came to dominate the commercial market for nuclear power plants. Even here though he is very black and white
about the personalities involved and makes little attempt to present a balanced
view of, for example, Admiral Hyman Rickover
and his achievements or Milton Shaw, who was a pivotal figure in the Atomic Energy Commission when the decision was taken to cancel molten salt reactor research.
Where he has done detailed research such as in chapters 7
and 9, he has turned up organisations and personalities that are retiring and
secretive, such as Hector Dauvergne and
George Langworth
who did not show up when I did an
internet trawl concerning the development of Thorium power for an article that I wrote in September 2011.
In chapter 7 Martin considers the Asian context for nuclear
power, and this is also well researched, although clearly access to detailed information
sources and policy makers in China has been extremely limited until recently. India has a huge energy requirement and
should be a good candidate for nuclear innovation, but based on the operating
performance of their nuclear industry, as quoted in “Superfuel”, they seem to be
unable to successfully run their existing nuclear plants, so they cannot be
considered as serious candidates to develop LFTR’s.
Like India, China has a similarly overwhelming need for new energy sources, they have the political conditions for taking risks and they’re not hamstrung by the attitudes arising from 60 years of operation of traditional conventional uranium plants. They have a highly disciplined technical workforce and experience of stringent quality control. Furthermore, their regulatory framework is undeveloped compared to the West, and objections are likely to be ignored in the wider public interest. Finally they have more than enough money to spend!
Like India, China has a similarly overwhelming need for new energy sources, they have the political conditions for taking risks and they’re not hamstrung by the attitudes arising from 60 years of operation of traditional conventional uranium plants. They have a highly disciplined technical workforce and experience of stringent quality control. Furthermore, their regulatory framework is undeveloped compared to the West, and objections are likely to be ignored in the wider public interest. Finally they have more than enough money to spend!
In Chapter 10 “What we should do?” Martin sets out a
plan, from a distinctly US viewpoint, giving ways to fund and conduct a thorium
power development programme. He has
researched the numbers and what he proposes would not have been impossible to
achieve in a confident US of the 1940’s, 50s or 60’s. But the US is now a very different country,
politically polarised, saddled with a huge and still growing national debt and
facing a serious crisis after the next election when they will have to begin to
balance the books. I agree with Richard
Martin’s conclusion that China will be the first country to commercialise LFTR
technology and, after establishing valid patents, will probably sell it to the West
at a price that won’t be matched by any development programme which is started
later than theirs!
We can, however, still hope for a breakthrough for Kirk
Sorensen with the US military.
0 comments:
Post a Comment